如何用 golang 生成比特币钱包

前一段时间看了区块链相关的内容,学习了一下bitcoin地址生成。内容来自网络。

第一步,随机选取一个32字节的数,大小介于1~0xFFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFE BAAE DCE6 AF48 A03B BFD2 5E8C D036 4141之间,作为私钥

PS: 助记词是将这个随机数按每 11位分组映射到 2048 个单词位得到 12 16 或 24 个单词。

18e14a7b6a307f426a94f8114701e7c8e774e7f9a47e2c2035db29a206321725

第二步,使用椭圆曲线加密算法(ECDSA-SECP256k1)计算私钥所对应的非压缩公钥(共65字节,1字节0x04,32字节为x坐标,32字节为y坐标)。

0450863AD64A87AE8A2FE83C1AF1A8403CB53F53E486D8511DAD8A04887E5B23522CD470243453A299FA9E77237716103ABC11A1DF38855ED6F2EE187E9C582BA6

第三步,计算公钥的SHA-256哈希值

600FFE422B4E00731A59557A5CCA46CC183944191006324A447BDB2D98D4B408

第四步,计算上一步哈希值的RIPEMD-160哈希值

010966776006953D5567439E5E39F86A0D273BEE

第五步,在上一步结果之间加入地址版本号(如比特币主网版本号”0x00”)

00010966776006953D5567439E5E39F86A0D273BEE

第六步,计算上一步结果的SHA-256哈希值

445C7A8007A93D8733188288BB320A8FE2DEBD2AE1B47F0F50BC10BAE845C094

第七步,再次计算上一步结果的SHA-256哈希值

D61967F63C7DD183914A4AE452C9F6AD5D462CE3D277798075B107615C1A8A30

第八步,取上一步结果的前4个字节(8位十六进制数)D61967F6,把这4个字节加在第五步结果的后面,作为校验(这就是比特币地址的16进制形态)

00010966776006953D5567439E5E39F86A0D273BEED61967F6

第九步,用base58表示法变换一下地址(这就是最常见的比特币地址形态)

16UwLL9Risc3QfPqBUvKofHmBQ7wMtjvM

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
package main

import (
"bytes"
"crypto/ecdsa"
"crypto/elliptic"
"crypto/rand"
"crypto/sha256"
"fmt"
"golang.org/x/crypto/ripemd160"
"log"
)

const VERSION = byte(0x00)
const CHECKSUM_LENGTH = 4

type BitcoinKeys struct {
PrivateKey *ecdsa.PrivateKey
PublicKey []byte
}

func GetBitcoinKeys() *BitcoinKeys {
b := &BitcoinKeys{nil, nil}
b.newKeyPair()
return b
}

func (b *BitcoinKeys) newKeyPair() {
curve := elliptic.P256()
var err error
b.PrivateKey, err = ecdsa.GenerateKey(curve, rand.Reader)
if err != nil {
log.Panic(err)
}
b.PublicKey = append(b.PrivateKey.PublicKey.X.Bytes(), b.PrivateKey.PublicKey.Y.Bytes()...)
}

//获取地址
func (b *BitcoinKeys) GetAddress() []byte {
//1.ripemd160(sha256(publickey))
ripPubKey := GeneratePublicKeyHash(b.PublicKey)
//2.最前面添加一个字节的版本信息获得 versionPublickeyHash
versionPublickeyHash := append([]byte{VERSION}, ripPubKey[:]...)
//3.sha256(sha256(versionPublickeyHash)) 取最后四个字节的值
tailHash := CheckSumHash(versionPublickeyHash)
//4.拼接最终hash versionPublickeyHash + checksumHash
finalHash := append(versionPublickeyHash, tailHash...)
//进行base58加密
address := Base58Encode(finalHash)
return address
}

func GeneratePublicKeyHash(publicKey []byte) []byte {
sha256PubKey := sha256.Sum256(publicKey)
r := ripemd160.New()
r.Write(sha256PubKey[:])
ripPubKey := r.Sum(nil)
return ripPubKey
}

//通过地址获得公钥
func GetPublicKeyHashFromAddress(address string) []byte {
addressBytes := []byte(address)
fullHash := Base58Decode(addressBytes)
publicKeyHash := fullHash[1 : len(fullHash)-CHECKSUM_LENGTH]
return publicKeyHash
}

func CheckSumHash(versionPublickeyHash []byte) []byte {
versionPublickeyHashSha1 := sha256.Sum256(versionPublickeyHash)
versionPublickeyHashSha2 := sha256.Sum256(versionPublickeyHashSha1[:])
tailHash := versionPublickeyHashSha2[:CHECKSUM_LENGTH]
return tailHash
}

//检测比特币地址是否有效
func IsVaildBitcoinAddress(address string) bool {
adddressByte := []byte(address)
fullHash := Base58Decode(adddressByte)
if len(fullHash) != 25 {
return false
}
prefixHash := fullHash[:len(fullHash)-CHECKSUM_LENGTH]
tailHash := fullHash[len(fullHash)-CHECKSUM_LENGTH:]
tailHash2 := CheckSumHash(prefixHash)
if bytes.Compare(tailHash, tailHash2[:]) == 0 {
return true
} else {
return false
}
}

func main() {
keys := GetBitcoinKeys()
bitcoinAddress := keys.GetAddress()
fmt.Println("比特币地址:", string(bitcoinAddress))
fmt.Printf("比特币地址是否有效:%v\n:", IsVaildBitcoinAddress(string(bitcoinAddress)))
}


base58

Base58 采用数字、大写字母、小写字母,去除歧义字符 0(零)、O(大写字母 O)、I(大写字母i)、l(小写字母L),总计58个字符作为编码的字母表。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
package main

import (
"bytes"
"math/big"
)

var b58Alphabet = []byte("123456789ABCDEFGHJKLMNPQRSTUVWXYZabcdefghijkmnopqrstuvwxyz")

func Base58Encode(input []byte) []byte {
var result []byte

x := big.NewInt(0).SetBytes(input)

base := big.NewInt(int64(len(b58Alphabet)))
zero := big.NewInt(0)
mod := &big.Int{}

for x.Cmp(zero) != 0 {
x.DivMod(x, base, mod)
result = append(result, b58Alphabet[mod.Int64()])
}

ReverseBytes(result)

for _, b := range input {
if b == 0x00 {
result = append([]byte{b58Alphabet[0]}, result...)
} else {
break
}
}
return result

}

func Base58Decode(input []byte) []byte {
result := big.NewInt(0)
zeroBytes := 0
for _, b := range input {
if b != b58Alphabet[0] {
break
}
zeroBytes++
}
payload := input[zeroBytes:]
for _, b := range payload {
charIndex := bytes.IndexByte(b58Alphabet, b)
result.Mul(result, big.NewInt(int64(len(b58Alphabet))))
result.Add(result, big.NewInt(int64(charIndex)))
}

decoded := result.Bytes()
decoded = append(bytes.Repeat([]byte{byte(0x00)}, zeroBytes), decoded...)

return decoded
}

func ReverseBytes(data []byte) {
for i, j := 0, len(data)-1; i < j; i, j = i+1, j-1 {
data[i], data[j] = data[j], data[i]
}
}


go-singlefilght

singleflight

1
2
3
golang.org/x/sync/singleflight


singleflight 是 go 提供的一个扩展并发原语,主要是用来合并请求来降低服务压力。

code

1
2
https://cs.opensource.google/go/x/sync/+/036812b2:singleflight/singleflight.go

原理

实现了一个 Group 的 struct

1
2
3
4
5
type Group struct {
mu sync.Mutex // protects m
m map[string]*call // lazily initialized
}

阅读更多

golang sync

##Goroutine 内存占用

下面是一个创建 goroutine 什么也不干,对内存的占用打印。说明创建 goroutine 的成本非常低。

1
2
3
4
5
6
7
8
num:1  mem: 0.062MB average:64.000kb 
num:10 mem: 0.000MB average:0.000kb
num:100 mem: 0.000MB average:0.000kb
num:1000 mem: 0.250MB average:0.256kb
num:10000 mem: 1.373MB average:0.141kb
num:100000 mem: 265.852MB average:2.722kb
num:1000000 mem: 2462.125MB average:2.521kb

以下是创建代码:

阅读更多

nsq 随录

nsq

nsq 官网
nsq
go-nsq

组件

nsqlookupd

是守护进程负责管理拓扑信息。客户端通过查询 nsqlookupd 来发现指定话题(topic)的生产者,并且 nsqd 节点广播话题(topic)和通道(channel)信息。

阅读更多